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The spatial viscous instability of axisymmetric jets 
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The stability of three axisymmetric jet profiles is reviewed. These profiles 
represent the development of an incompressible jet from a nearly top-hat profile 
to a fully developed jet profile. The disturbance equations for arbitrary mode 
number in a region of zero shear, which provide the boundary conditions for the 
numerical solution, are solved analytically through use of the disturbance 
vorticity equations. Numerical solutions for the spatial stability for the axi- 
symmetric (n = 0) disturbance and the asymmetric n = l disturbance are 
presented. Previously published calculations of least stable modes are shown to 
be incorrectly interpreted and their actual mode types are given. The critical 
Reynolds number is found to increase as the profile varies from a top-hat to a 
fully developed jet form. Closed contours of constant amplification, which are 
unusual in free shear flows, are shown to exist for the n = 1 disturbance in the 
fully developed jet region. A fluctuation energy balance is used to justify the 
occurrence of this destabilizing effect of decreasing Reynolds number. 

1. Introduction 
Though the axisymmetric jet is known to be unstable at high Reynolds 

numbers the experimental observations of the characteristic disturbances do 
not provide a consistent description of the instability process. Reynolds (1962) 
reported modes of instability of a dyed water jet submerged in a water tank. 
These modes included axisymmetric condensations for Reynolds numbers, 
based on the volume flow at the jet exit, in the range 50-250 and sinuous, long 
wavelength undulations for Reynolds numbers of 100-250. Above a Reynolds 
number of 300 only a confused breakup was observed. Viilu (1962), in a similar 
experiment, found a critical Reynolds number between 10.5 and 11.8. In  more 
recent experiments, Mattingly & Chang (1974) showed for a Reynolds number 
of 300 that close to the jet exit the axisymmetric mode dominated whereas 
further downstream, where the shear-layer half-width was 55 yo of the potential- 
core radius, the disturbance observed experimentally exhibited an axisymmetric 
character half the time and a helical one the rest of the time. 

There have been a number of analytical studies which have attempted to 
describe the stability characteristics of the axisymmetric jet. In  many cases, the 
essential stability characteristics of a flow are revealed by inviscid stability 
calculations. Batchelor & Gill (1962) and Mattingly & Chang (1974) both con- 
sidered only the inviscid stability of the jet flow. Batchelor & Gill (1962) con- 
sidered a ‘top-hat’ velocity profile to represent the mean flow close to the jet 
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exit. Crighton (1973) indicated that real velocity profiles do not have this 
character except close to the nozzle, where the effect of the nozzle cannot be 
ignored (see Orszag & Crow 1970). Mattingly & Chang (1974) and Michalke (1971) 
showed that good agreement with experimental results could be obtained 
assuming spatial growth of the disturbances and realistic mean velocity profiles. 
(Michalke considered the turbulent jet excitation experiments by Crow & 
Champagne 1971.) Thus it may be concluded that the use of realistic mean 
velocity profiles is important in the stability calculations. The disadvantage of 
using a realistic profile is that in most cases the stability calculations must be 
performed numerically since no simple analytic eigenvalue equation exists. 

The stability of viscous axisymmetric flows has received little attention in 
comparison with that of plane flows. Gill (1962) used a simplified viscous analysis 
to attempt to explain the occurrence of axisymmetric growing disturbances in 
the developed axisymmetric jet. His analysis (1965) of axisymmetric pipe flow 
was also confined to the n = 0,  axisymmetric mode. Lessen, Sadler & Liu (1968), 
Garg (1971) and Garg & Rouleau (1972) have provided an extensive study of 
the spatial stability of pipe Poiseuille flow. They considered a viscous fluid and 
found solutions numerically for arbitrary azimuthal mode numbers. 

Recently the problem of the viscous stability of a round jet has been studied 
by several workers. Burridge (1968) considered temporal amplification only and 
obtained numerical solutions for a jet velocity profile given by u = (1 + r2)-2. 

Kambe (1969) also considered the temporal instability of a round jet with a 
discontinuous parabolic mean velocity profile. Mollendorf & Gebhart (1  973) and 
Lessen & Singh (1973) have recently studied the viscous spatial stability of a 
jet with the same profile as that used by Batchelor & Gill (1962) and Burridge 
(1968). 

The present paper describes the viscous spatial stability of an axisymmetric 
jet to disturbances of arbitrary azimuthal mode number. Jet  velocity profiles 
characterizing several stages of development of a round jet are examined. In  
this manner the axial development of a disturbance of fixed frequency may be 
examined. 

2. Stability equations and boundary conditions 
The four coupled ordinary differential equations for the disturbance motion 

have been derived by Batchelor & Gill (1962). The velocity and pressure are 
decomposed into a steady mean flow and superimposed disturbances. The equa- 
tion of motion Iinear in the disturbances in tensor form is 

where the disturbance velocity tensor u;, has physical velocity components v*, 
w*r* and u* with respect to the cylindrical co-ordinates r*, 4 and z* and the 
axial velocity component of the axisymmetric parallel mean flow is U*(r*). The 
usual notation for covariant differentiation has been used. The disturbance 

(2.21 
continuity equation is 

U * l j  = 0. 
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The disturbance is assumed to Fourier decompose into complex components 
typically of the form 

$*(r*, $, z*, t*)  = Re [$*(r*) exp {i(a*z* - w*t* +n$)}], (2.3) 

where a* is the complex wavenumber, w* is the real radian frequency and n is 
the azimuthal mode number. Substituting terms of the form (2.3) for the velocity 
and pressure fluctuations into (2.2) and (2.1), we obtain four coupled ordinary 
differential equations for the four unknown functions 8*, 8*, a* and @*. Non- 
dimensionalizing these coupled differential equations with respect to a velocity 
scale V,*, alengthscale L,*and theambient density& andintroducing the Reynolds 
number R = U,*L,*/v$, these equations can be written as 

iaa + 8' + 8/r +in 61. = 0, (2 .4)  

and 
ia(U-c)Q+U'O+iafj = R 

where c = w / a  and primes denote differentiation with respect to r .  
The boundary conditions on the fluctuations are (Batchelor & Gill 1962) 

8 , 8 ,  $2, i;+ 0 as r+co (2.8) 

and a(0) = fj(0) = 0, n += 0, (2.9) 

O(0) = 8(0) = 0, 

O(o)+iO(o) = 0, 

n + 1, 

n = 1. 

(2.10) 

(2.11) 

In  order to develop the numerical technique for solution of these equations 
it is necessary to find the form of the solutions close to the axis of symmetry and 
in the nearly undisturbed fluid surrounding the jet. These asymptotic solutions 
will be developed in the next section. 

3. Asymptotic solutions of the stability equations 
Inspection of the stability equations (2.4)-(2.7) reveals that for n = 0, i.e. 

axisymmetric disturbances, the sixth-order set of equations can be separated 
into one fourth-order and one second-order set of equations. The fourth-order 
set contains only radial and axial velocity components. Because of this simpli- 
fication it is convenient to look at the cases of axisymmetric disturbances, 
n = 0, and asymmetric disturbances, n += 0,  separately. 

Axisymmetric disturbances: n = 0 

For sma.11 values of r ,  Lessen et al. (1968) and Garg (197 1) obtained the solution 
to the disturbance equations by expanding the velocity and pressure fluctuations 
in a power series in r. The recurrence relations for the coefficients in the 

33 FLM 77 
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power-series expansion are given by Garg (1971). The eigenfunctions can then 
be expressed as the sum of two linearly independent solutions. The fourth-order 
system of differential equations the n = 0 disturbance may be reduced to a 
single fourth-order equation for the transverse velocity fluctuation 0. Sufficiently 
far from the jet axis the terms involving derivatives of the mean flow are negli- 
gible. I f  a first-order Hankel transformation is performed on this fourth-order 
equation in terms of a radial wavenumber k ,  a quartic equation for k is obtained. 
Thus the form of the solution for 0 outside the jet in a region of constant mean 
flow is found to be 

where /3 = [a2 + iaR(U, - c)]*, and U, is a constant mean flow velocity far from 
the jet axis. In  order to satisfy the boundary conditions as r-+co, only two of the 
solutions of (3.1) for 0 can be retained. The choice of the Hankel function of the 
first or second kind depends on the phase of their arguments. 

Asymmetric disturbances: n + 0 

For asymmetric disturbances the eigenfunctions may again be expanded as a 
power series for small r .  The corresponding recurrence relations for the coefficients 
in the series expansion are given by Garg & Rouleau (1972). In  a manner similar 
to that for the case n = 0, it  can be shown that the solution can be expressed in 
terms of three independent solutions. 

The analytical solution of the stability equations (2.4)-(2.7) in a region of 
constant mean velocity has been derived by Kambe (1969) and Burridge (1968). 
In  the former work the solution was derived in terms of T ( r )  = -i(0+i8) 
S(r)  = - i ( O  - ia), while Burridge introduced the new variables 

$ = iar, Q = (art3 - n&)/(n2 + a2r2). 

However, the form of the solutions for the velocity and pressure fluctuations is 
more conveniently derived if the vorticity equations are considered. The com- 
ponents of the fluctuating vorticity vector w are assumed to take the form 

(w1, w,,w,) (r,  $ 9  z, t )  = Re [{el, p, ,  P3) (4 exp {W - wt + n$)>l. (3.2) 

8 = P,+iB,, t^ = P,-iP2 (3.3) 

If new dependent variables 

are introduced, i t  may then be readily shown that the solutions for 8, t^ and r ,  
take the form 

8(r) = Sl,zH$)'iz)(i/3r), 
t (r)  = q,2HE~'f ) ( i /3r ) ,  

?,(r) = Hg)*(2)(i/3r), 

where a Hankel function of the first or second kind is chosen, depending on the 
argument, such that the boundary conditions on the disturbances are met. The 
8, and 9, vorticity components can be obtained using (3.3). One of the three 
remaining constants in (3.4) may be eliminated using the fact that the divergence 

(3.4) I 
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of the vorticity is zero. By making use of the relationship between the vorticity 
and velocity components and using the z-momentum equation to obtain the 
pressure fluctuation, the asymptotic form, for large radii of the velocity and 
pressure disturbances can be shown to be 

( 3 . 5 ~ )  a = A 1,2 p ’ , ( z ’  (iar ) -I- A 3,4 H$:)*t2’( ipr), 

and fj =Al,,(w/a- U,) H$)$(2)(iar).  ( 3 . 5 4  

The solutions (3.5) represent the form of the solutions in any region where the 
mean velocity is constant and it can be shown that these solutions are equivalent 
to the series expansions by Garg & Rouleau for small r ,  where modified Bessel 
functions of the first kind replace the Hankel functions. Such a solution would 
be valid in the potential core of a round jet. 

The expansions and analytic solutions derived in this section will form the 
basis of the numerical technique described in the next section. 

4. Numerical method of solution of eigenvalue problem 
Since the numerical techniques for the axisymmetric and asymmetric disturb- 

ances are very similar, we shall discuss here only the technique for the more 
complex problem of asymmetric disturbances. 

For small r the eigensolutions can be determined using the power-series 
expansion and the recurrence relationships if the mean velocity is not constant 
or a solution of the form (3.5) if the mean velocity is constant. These solutions 
provide the starting conditions for step-by-step numerical integration a t  r = r,. 
Equations (2.4)-(2.7) may be written as six first-order differential equations in 
the dependent variables 3 , 8 ,  a, fj, D& and &3. The three independent solutions 
are integrated numerically using a standard Runge-Kutta scheme with error 
minimization developed by Fyfe (1966). In  order to preserve the linear inde- 
pendence of the three solutions, a normalization and orthogonalization procedure 
is performed at a number of steps within the range of the numerical integration. 
This method is discussed by Bellman & Kalaba (1965, p. 98) and Davey (1973). 
The technique has been successfully applied by Sharma (1968), Davey & Nguyen 
(1971) and Morris (1971) among others. It is the simplest and most accuiate 
method of decontaminating the linear solutions. In  the integration used in this 
work the modifications proposed by Conte (1966) have been employed. In  this 
technique an orthonormalization is applied when the angle between the inde- 
pendent vectors is too small or when the magnitude of any vector exceeds a 
pre-assigned constant whose size is determined by the magnitude of the expected 
solution. Conte showed that the optimum choice of the minimum angle between 
vectors is surprisingly small, of the order of lo, since accuracy is lost by too 

33-2 
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frequent orthonormalization because of the extensive matrix and vector multi- 
plications which are required. 

The numerical solutions at some location r = a in the uniform flow outside 
the jet are of the form 

&(a) = Gl al(a) + Ul &,(a) + P1 a,@). (4.1) 

The six coefficients in (4.1) and (3 .5)  may be found by elimination of the six 
dependent variables at r = a, which leads to 

F(a, w ,  R )  [ 4 , 2 , 4 , 4 ,  A4,5, Ul, Gl, P1lT = 0, ( 4 4  

where F ( a ,  w ,  R )  is a 6 x 6 matrix whose coefficients may easily be found from 
(3.5) and (4.1). The eigenvalues can then be determined by satisfying the 
condition A = det F = 0. (4.3) 

An iterative technique is used to determine an eigenvalue. An nth-order 
inverse Lagrangian interpolation scheme is used to minimize A, and the (n + 1)th 
guess an+1 for the eigenvalue is given by 

The convergence to an eigenvalue is much improved if the initial guesses are 
as accurate as possible. The original location of an eigenvalue was determined 
using the technique employed by Lessen et al. (1968). In  their technique the 
number of eigenvalues within a closed contour is established by determining 
the net multiples of 27r by which the phase of the determinant A changes around 
the contour. This method is extremely powerful since, as will be seen later, it  
avoids the possibility of missing the least stable eigenvalue. In  the next section 
the mean velocity profiles will be examined. 

5. Mean velocity profiles in the jet 
Before performing the numerical solution of the stability equations, i t  is 

necessary to specify the mean velocity profile. Although the mean flow is 
diverging the solutions to be presented here are based on the assumption that the 
flow is locally parallel. The choice of mean profiles has been governed by available 
experimental evidence and by the wish to enable a comparison with other 
theoretical solutions. 

The solution of Landau & Lifshitz (1959, p. 86) of the boundary-layer 
equations for a similar axisymmetric jet issuing from a small orifice, which will 
be called profile I ,  is given by 

U*/U; = (1 +r*2/r,*2}-2, (5.1) 

where rz = Sx/R, U,* = vR2/8x and R = (3M/n,uv2)4 for small angles of spread of 
the jet, M being the flux of momentum across a plane normal to the jet axis. 
The form (5.1) for the mean profile corresponds to that used by Burridge (1968) 
and Lessen & Singh (1973). The experiments by Andrade & Tsien (1937) and 
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the numerical results of Pai & Hsieh (1972) show that the mean velocity profiIes 
approach the form (5.1) far from the jet orifice. Thus the solutions for this 
profile will represent the stability of the axisymmetric fully developed jet. 

Close to the jet exit the mean velocity profile may approach a top-hat profile. 
On the basis of Freymuth’s (1966) experiments Michalke (1971) used two 
velocity profiles to describe the transition from a top-hat profile at the jet exit 
to the fully developed jet profile (5.1). The first velocity profile, referred to as 
profile 11, is given by 

where 8 is chosen such that tanh (8/40) is close to unity to minimize the dis- 
continuity in the profile at r = 1-48. B is the local momentum thickness, 
defined by 

S =Jam U(1- U ) d r ,  (5.3) 

and can be used to represent the influence of axisymmetry on the stability of 
the jet. 

The second velocity profile, referred to as profile 111, is given by 

1 1  & = :( 1 + tanh [2 (;-.)I) (5.4) 

and is taken to be representative of the mean velocity profile in the region 
towards the end of the potential core. 

Numerical calculations of the stability of axisymmetric jets described by 
profiles I ,  I1 and I11 for various values of 8 will be given in the next section. 

6. Numerical calculations and results for eigenvalues and eigenfunctions 
ProJile I :  the fully developed jet 

Batchelor & Gill (1962) demonstrated that profile I is stable to axisymmetric 
disturbances. Kambe (1969), Mollendorf & Gebhart (1973) and Lessen & Singh 
(1973) found neither neutrally stable nor amplified disturbances. The amplifica- 
tion factor - ax is shown in figure 1 (a )  as a function of frequency o for several 
values of R. The inviscid solution is also shown. This was obtained numerically 
by integrating the second-order inviscid stability equation with the appropriate 
choice of integration contour to avoid the singularity a t  U = c. The amplification 
factor can be seen slowly to approach the inviscid result with increasing 
Reynolds number. The corresponding phase velocities are shown in figure 1 (b). 

In  order to calculate an eigenvalue using an iterative scheme it is helpful and 
important to find the approximate location of the eigenvalue so that the initial 
guesses to start the iteration allow good convergence. For any given values of 
the Reynolds number and frequency there will be a spectrum of eigenvalues. In  
stability analysis the eigenvalue whose imaginary part is algebraically the 
least is the most important since this is the least stable. In  order to locate all the 
eigenvalues lying within a specified range of wavenumbers, the method used by 
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FIGURE 1. (a)  Amplification factor and ( b )  phase velocity for mean velocity 
profile I; n. = 0. - - -, inviscid calculation. 
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a, ai 

0.2322 0.0666 
0.3840 0.3904 
0.4842 0.8976 
0.5628 1.5850 

TABLE 1. Eigenvalues in the range 0 < ar < 1, 0 < ai < 2;  R = 80, w = 0.2, 1 . ~  = 0 

Lessen et al. (1968) was adopted. By counting the number of net multiples of 27r 
by which the phase of A [equation (4.3)] changes around a closed contour in the 
a plane, the number of zeros within the contour may be determined. As an 
example the case R = 80, n = 0 and w = 0.2 was examined. The argument of A 
altered by four net multiples of 277 around the contour 0 < a, < 1, 0 < ag < 2. 
The eigenvalues may easily be located and are given in table I .  

The eigenvalues shown in figure 1 (a )  correspond to the least stable eigenvalues 
at each value of R and w .  The behaviour of the four least stable eigenvalues for 
n = 0 and R = 80 a t  low frequencies is shown in figure 2. The eigenvalues given 
by Mollendorf & Gebhart (1973), also shown, can be seen to refer to the first, 
third and fourth least stable modes. The variation of ai with w calculated by 
Lessen & Singh (1973) for two modes a t  R = 75 is also shown in figure 2 .  Clearly 
their modes I1 and I correspond to the third and fourth least stable modes, 
respectively. Thus it is clear that unless an eigenvalue search is conducted in a 
systematic manner, such a.s the method used here, important eigensolutions may 
be overlooked. Typical eigenfunctions for the four least stable solutions are 
shown in figure 3. The eigenfunctions are normalized such that 161 = 1 when 
r = 0. The complexity of the eigenfunctions increases as the eigenvalue becomes 
more stable. The least stable eigenfunction corresponds most closely to the 
inviscid solution, also shown in figure 3. 

The amplification factor and phase velocity as a function of w and R for the 
asymmetric n = 1 mode are shown in figures 4(a )  and (b ) ,  respectively. The 
phase velocity gradually approaches the inviscid solution as R increases. For the 
n = 1 mode the phme velocity increases monotonically with frequency whereas 
for the n = 0 mode (figure 1 b )  the phase velocity increased with frequency a t  
low frequencies and decreased a t  high frequencies. The amplification factor does 
not behave in such a regular manner and an unusual phenomenon occurs. 
Decreasing the value of R is seen to increase the peak amplification factor as well 
as the amplification a t  low frequencies. For values of R of order less than 200 
decreasing the value of R decreases the amplification factors a t  all frequencies. 
This phenomenon is not reported by Mollendorf & Gebhart (1973) but was 
observed by Burridge (1968) for temporal amplification, and Lessen & Singh 
(1973) also suggested that decreasing the Reynolds number may not provide a 
stabilizing influence. These calculations can be seen to lead to closed contours 
in the curves of constant amplification factor (figure 5).  

Though the occurrence of closed contours in curves of constant amplification 
are not uncommon in stability analyses of flows in the presence of a boundary, 
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FIGURE 2. Amplification for four least stable modes for profile I; n = 0, R = 80. -, present 
calculations; - - - -, Lessen & Singh (1973); 0, Mollendorf & Gebhart (1973). 
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FIGURE 3. Four least stable eigenfunctionsforprofile1;O < a, < 1, R = 80, w = 0.2, n = 0. 
- - - - - - , inviscid solution; -, a = 0.2322 + 0.06661; - - -, a = 0.3840 + 0,39043'; - - - -, 
a = 0.4842 + 0.89761; - - - --, a = 0.5628 -+ 1.5851. 
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R 

FIGURE 5. Curves of constant amplification for mean velocity profile I. 

such as plane Poiseuille and Blasius flows, this occurrence is unusual in free shear 
flows, where a disturbance of a given wavenumber seems to have its greatest 
rate of growth a t  infinite Reynolds number (Batchelor & Gill 1962). In  a very 
simple sense, whether a disturbance is amplified or not depends on a balance 
between the integrated energy production and the integrated energy dissipation. 
The energy production depends on the distribution of Reynolds stress and mean 
velocity gradient. Since the Reynolds-stress distribution is dependent on the 
Reynolds number, it  is possible for the viscosity to affect both the viscous 
dissipation and the energy production. For a parallel mean flow with no axial 
dependence of time-averaged properties the non-dimensionalized time-averaged 
fluctuation energy integral equation may be written in the form 

E-ldEldz = N - M / R ,  (6.1) 

where E ,  the integrated mechanical energy flux, is given by 

r m  

N ,  the energy production term is given by 
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R 

FIGURE 6. Fluctuation mechanical energy balance for profile I; n = 1, w = 0.3. 
---, - 2ai; - - - - -, production, N ;  - - -- -, dissipation, M / R .  

and MIR, the viscous dissipation, is given by 
------ 

;s ,m(r[(g)a+ ($)a+ ($)a+ ($)a+ @a+ (%)a] 
--- -- 

dr. (6.4) 

If the form of the fluctuations is assumed to be that given by (2.3) with an 
equivalent fluctuation amplitude A(x) ,  and the fluctuation integrals E,  N ,  and M 
are normalized such that E = 1 4 1 2 ,  then (6.1) takes the form 

- 2ai = N - M / R .  (6-5) 

The t h e e  terms in (6.5) are shown in figure 6 as a function of Reynolds number 
for w = 0.3 and n = 1. Though the decrease in amplification rate from R = 200 
to the inviscid limit is small, from - 0.0621 to - 0.0518, respectively, increasing 
the Reynolds number above 200 can be seen to decrease the energy production 
at a faster rate than the energy dissipation, giving a reduced growth or stabilizing 
effect. 

The critical value of R was calculated to be 37-64, for w = 0.1 and a = 0.44. 
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This agrees well with the calculations by Mollendorf & Gebhart (1973) of 
R, = 37.6, for w = 0.1, by Burridge (1968) of R, = 37.5, for a = 0.43 and by Lessen 
& Singh (1973) of R, = 37.9, for a = 0.3989. Kambe (1969) gave a critical value of 
R, = 32.8 for a discontinuous parabolic mean velocity profile. Interpolation of 
the results of Burridge (1968) for the maximum amplification factor and use of 
the transformation between temporal and spatial amplification in terms of the 
group velocity, (a& = - (i3wr/tJar) (wJT  (Gaster 1962), gives a maximum value 
of -ai of approximately 0.1 near a value of R = 200. This value is somewhat 
higher than that given by the direct spatial stability calculation. However the 
transformation is only valid for small rates of amplification. The corresponding 
eigenfunctions are also found to agree closely with those of Mollendorf & 
Gebhart (1973) and Lessen & Singh (1973). 

Projile 11: the initial mixing region 

The inviscid stability equation for this mean velocity profile has been solved by 
Michalke (1  971) for amplifying disturbances only. The amplification factors and 
phase velocities for the axisymmetric (n  = 0) mode are shown in figures 7 (a) and 
(b ) ,  respectively. The wavenumber, frequency and Reynolds number are each 
expressed as s local quantity by multiplying each by the local non-dimensional 
thickness 8. As a check on the numerical series expansions for profiles I1 and 111, 
the initial values in the numerical integration were obtained separately using 
both the series expansions for constant mean velocity and the analytic form of 
the solutions (3.5). Both methods gave the same answer to within four significant 
figures. The maximum amplification in the inviscid solution, for small values of 8, 
approaches the result for the two-dimensional shear layer, given by Michalke 
(1965), of w = 0.1034, a, = 0.2015 and ad = -0.1142. In  these calculations for 
the axisymmetric mixing region and 8 = 0.02, i t  is found that for maximum 
amplification u8 = 0.108, ar8 = 0.199 and ado = - 0.114. At low frequencies the 
phase velocity exceeds the jet centre-line velocity by as much as 30 yo. This is 
observed for both the inviscid and the viscous solutions. The value of this peak 
increases with increasing Reynolds number up to a value of R8 of the order of 
10 before approaching the inviscid limit with a further increase in Rt?. 

The n = 1 mode is found to exhibit very similar amplification rates to the 
n = 0 mode except at low frequencies, where it is marginally less stable. The 
phase velocities for the n = 1 mode are found to be always less than the jet 
velocity. 

The critical Reynolds numbers for the f i s t  two modes for 8 = 0.02 are 

R,8 = 0.683, w e  = 0.0233, a8 = 0.0313 for n = 0, 

R,8 = 0.444, w8 = 0.0070, a8 = 0.0149 for n = 8. 

Thus, close to the jet exit, though the maximum inviscid amplification rates are 
similar the critical Reynolds number for the n = 1 mode is marginally less than 
that for the n = 0 mode. 
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Projile 111: the developed annular mixing region 

The amplification factors for the axisymmetric (n = 0 )  mode are shown in 
figure 8 (a).  For finite Reynolds number these do not exceed the inviscid limiting 
values and behave in a similar manner to those for profile11 or the two-dimensional 
shear layer. The corresponding phase velocity is found to tend to the inviscid 
limit from above a t  high frequencies. At low frequencies, however, increasing 
the Reynolds number leads to an increase in the peak phase velocity, which is in 
excess of the jet velocity, a t  a decreasing value of the frequency. 

The amplification rates for the n = 1 mode are shown in figure 8(b). The 
maximum amplification for the n = 1 mode occurs a t  a lower frequency than 
that for the n = 0 mode. At low frequencies the n = 1 mode is more unstable 
than the n = 0 mode. For RB > 10 and wB > 0-2, the axisymmetric mode is 
slightly less stable. The phase velocity for the inviscid n = 1 mode varies only 
slightly with frequency and lies between 0.6 and 0.7 of the jet exit velocity. 
Decreasing the Reynolds number leads to a reduction in.phase velocity at low 
frequencies and an increase in phase velocity at high frequencies. 

The critical Reynolds numbers for the first two modes for 8 = 0.16 are 

R,B = 8.85, w e  = 0.1324, a0 = 0.1645 for n = 0, 

R,O = 3-48, wO = 0.0349, a8 = 0.0914 for n = 1. 

7. Discussion 
From the preceding calculations it is possible to show how a disturbance of 

constant physical frequency develops as it propagates downstream. For a flow 
where the mean velocity is a function of both radial and axial distance an 
equation of the form (6.1) may be developed which includes the axial depen- 
dencies. I f  the fluctuations in the analogous equation are approximated by local 
eigensolutions obtained assuming infinite parallel flow with the local mean 
velocity profile, an assumption which becomes more accurate as the Reynolds 
number increases, then the disturbance mean-square amplitude a t  any axial 
position may be related to its initial value by the expression 

Clearly the local amplitude depends on both the initial amplitude and the 
variation of growth rate with axial distance. Examination of the amplification 
rates in the annular mixing region shows that for a fixed frequency w increasing 
the thickness O leads first to increasing and then to decreasing amplification and 
finally to damping. Thus a t  each axial position the frequency of the disturbance 
that is most amplified will differ and will decrease with increasing axial distance. 
Correspondingly, the axial location of maximum amplitude for a disturbance of 
given constant physical frequency, given by the location a t  which ai = 0, will also 
move downstream with decreasing frequency. It can also be seen from the present 
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calculations that only the n = 1 mode can grow in the developed jet flow. Thus 
the location of peak amplitude of any axisymmetric disturbance will occur before 
this profile is encountered. The helical mode (n = 1) for low frequencies will 
continue to amplify in the developed jet flow. However it should be noted that 
in this region the disturbances are non-dimensionalized with respect to the jet 
centre-line velocity, so that a helical disturbance may decrease in absolute 
amplitude even though the local eigenvalue suggests amplification. 

The present calculations also indicate why there exist discrepancies between 
the experimentally observed modes of instability : some are axisymmetric, some 
helical. For a mean velocity profile given by a one-sided Gaussian distribution 
the inviscid analysis of Mattingly & Chang (1974) showed that the axisymmetric 
mode was the most unstable close to the jet exit. For the hyperbolic-tangent 
profile used in the present calculations to represent the mean flow profile close 
to the jet exit the inviscid calculations show nearly identical maximum growth 
rates for the n = 0 and n = 1 modes. Thus the smallest change in initial mean 
velocity profile can be expected to lead to different observations. The observed 
mode of instability will also depend on the initial perturbation, whether this is 
naturally occurring or excited. If the axisymmetric mode has the greatest initial 
amplitude at the jet exit, perhaps caused by a small fluctuation in the jet velocity, 
i t  will dominate in the first few diameters downstream. However if both axi- 
symmetric and helical modes have nearly equal amplitudes then the helical mode 
will tend to dominate downstream of the end of the potential core. 

The Reynolds number referred to in this paper for profile I is based on the 
momentum flux of the jet and so the relationship between this Reynolds number 
and that based on jet exit conditions depends on the velocity profile at the jet 
exit. I n  Reynolds’ (1962) experiments Re, = Qd/Av, where Q is the volume flow 
through the nozzle and A is the nozzle area. Thus, for a parabolic profile at the 
jet exit Re, = R and for a top-hat profile Re, = (2/3*)R. Thus the critical 
Reynolds numbers determined for the n = 1 mode in these calculations, given 
in terms of Reynolds’ (1962) experimental Reynolds numbers, are Re, = 43.6 
and Re, = 37.64 for uniform and parabolic jet exit flows respectively. These 
values are lower than the observed first occurrences of the sinuous mode of 
instability by Reynolds (1962) at an Re, of about 100. However, as suggested 
by Lessen & Singh (1973), no correction has been made for flow divergence, 
which may or may not be stabilizing. 

This work was sponsored by Air Force Contract F33615-73-c-2032, which is 
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